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ABSTRACT: We propose a simulation framework that can be used to design and evaluate the performance of adaptive

scanning algorithms on different phased-array weather radar designs. The simulator is proposed as tool to 1) compare the

performance of different adaptive scanning algorithms on the same weather event, 2) evaluate the performance of a given

adaptive scanning algorithm on several weather events, and 3) evaluate the performance of a given adaptive scanning

algorithmon a givenweather event using different radar designs.We illustrate the capabilities of the proposed framework to

design and evaluate the performance of adaptive algorithms aimed at reducing the update time using adaptive scanning.

The example concept of operations is based on a fast low-fidelity surveillance scan and a high-fidelity adaptive scan.

The flexibility of the proposed simulation framework is tested using two phased-array-radar designs and three comple-

mentary adaptive scanning algorithms: focused observations, beam clustering, and dwell tailoring. Based on a significant

weather event observed by an operational NEXRAD radar, our experimental results consist of radar data that were

simulated as if the same event had been observed by arbitrary combinations of radar systems and adaptive scanning con-

figurations. Results show that simulated fields of radar data capture the main data-quality impacts from the use of adaptive

scanning and can be used to obtain quantitative metrics and for qualitative comparison and evaluation by forecasters.

That is, the proposed simulator could provide an effective interface with meteorologists and could support the development

of concepts of operations that are based on adaptive scanning to meet the evolutionary observational needs of the U.S.

National Weather Service.
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1. Introduction

The U.S. National Weather Service (NWS) operates a net-

work of 159 S-band, Doppler, dual-polarization radars (Crum

and Alberty 1993) that provide critical real-time data in sup-

port of forecasters’ warning decision-making processes (Andra

et al. 2002). Deployed from 1992 through 1997 and originally

designed for a 20-yr service life, this network of Weather

Surveillance Radar-1988 Doppler (WSR-88D) instruments

was upgraded to dual polarization in the early 2010s [Radar

Operations Center (ROC); ROC 2018]. Recently, theWSR-88Ds

have undergone a series of comprehensive technological

updates that are expected to extend their service life to 2040

(ROC 2020). Beyond this date, it is uncertain whether the

WSR-88D will remain viable as one of the most important

observing systems for the NWS. Thus, several candidate re-

placement systems are currently being evaluated to eventually

inform a procurement process that may begin around 2030

(NWS 2020).

A fundamental premise in this process is that any candidate

replacement radar must meet a set of so-called threshold

functional requirements (NWS 2015), which are broadly based

on the performance of theWSR-88D (ROC 2007). In addition,

the NWS defined a set of optimal (or objective) functional re-

quirements that would result in improved capabilities aimed at

supporting its evolutionary weather observing needs. As such, it

is expected that preference will be given to candidate radar

designs that meet or approach one or more optimal require-

ments. However, these more capable systems will likely use

more radar resources compared to the WSR-88D and result in

increased system complexity and/or cost.

In the context of radar design, the fundamental resources

can be represented by power-aperture, time, bandwidth,

and control-and-processing software (Jeffrey 2009). These re-

sources define nontrivial trade-off spaces involving capabil-

ities, cost, and complexity. For example, as proposed by Zrnić

et al. (2015), a requirement for faster radar-data updates could

be met by a system operating with simultaneous independent

transmit beams at different frequencies to cover the volume

scan more quickly. In this case, improved capability in terms of

faster updates is achieved by imposing a larger demand on the

transmitter bandwidth. Alternatively, the same requirement

could be met by a different system operating with reduced

dwell times and a higher transmitter power to improve the

signal-to-noise ratio (SNR) and thus maintain the overall data

quality. In this example, there would be a larger demand on the

transmitter power.

One way to reduce the coupling between radar capabilities,

cost, and complexity is to recognize that it may not be neces-

sary to meet all functional requirements simultaneously. That

is, candidate replacement radars could meet subsets of func-

tional requirements at different times while still supporting the

mission needs of the NWS. For example, whereas a sensitivity

requirement may be imposed to detect weaker radar returns

associated with light precipitation systems or clear air, these
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types of situations may not require a high azimuthal resolution.

Conversely, sensitivity may not be a driving requirement to

support the observation of strong convective storms, whereas

providing a high azimuthal resolution could be important in

these situations. Under this paradigm, more demands could be

placed on the control-and-processing software to provide

forecasters with radar data that support their warning-decision

process at a given time. In other words, the radar can give

forecasters the data they needwhen andwhere they need them.

This is the concept of adaptive scanning, which has been ex-

plored both using simulations (e.g., Proud et al. 2009; Reinoso-

Rondinel et al. 2010; Nguyen and Chandrasekar 2017; Weber

et al. 2017; Schvartzman et al. 2017) and through implementations

on research and operational radars. While some of the earlier

implementations of adaptive scanningwere on radar systemswith

reflector antennas (e.g., Meischner et al. 1997; McLaughlin et al.

2009; Chrisman 2009; Junyent et al. 2010; Daniel et al. 2014;

Kollias et al. 2014), the effectiveness of these approaches can be

severely limited by mechanical inertia. Conversely, phased-array

radars (PAR) that use electronic beam steering provide unique

scanning flexibility (Zrnić et al. 2007) and thus the greatest po-

tential for improved capabilities using adaptive scanning (e.g.,

Heinselman and Torres 2011; Torres et al. 2016). Whereas many

of the unique capabilities of PAR can be leveraged to design

radar systems that meet all functional requirements simulta-

neously (e.g., Zrnić et al. 2015), if exploited effectively, adaptive

scanning with PAR could result in relatively less complex and/or

more cost-effective radar designs.

It is not trivial to develop an adaptive scanning concept of

operations (ConOps) that makes efficient use of radar capa-

bilities and still meets NWS mission needs. The first challenge

consists of understanding what is essential for forecasters fac-

ing different types of weather threats. Unfortunately, our un-

derstanding of which functional requirements must be met

under different conditions and which ones may be relaxed is

limited. For example, in the presence of rapidly evolving

convective storms, forecasters may need radar data with

faster updates (Heinselman et al. 2008; Brotzge et al. 2010;

LaDue et al. 2010; Heinselman et al. 2012; Bowden et al.

2015), though this need may not apply to clear-air regions.

The next challenge is to design an algorithm that can

adaptively manage the radar resources in order to meet

those functional requirements under the specified conditions.

Following on the previous example, an effective way to pro-

duce radar data for convective storms with faster updates is to

focus the rapid scans on volumetric regions with precipitation

echoes of interest (Chrisman 2009; Heinselman and Torres

2011). Here, ‘‘interest’’ can be defined in different ways de-

pending on the type of weather, the location, spatial extent,

and temporal evolution of echoes, and the needs of the

forecaster. The final challenge is to define a ConOps for the

adaptive scanning algorithm. That is, deciding which infor-

mation is needed to inform the adaptive decisions and how it

will be obtained. For the same example, a fast low-fidelity

deterministic scan with full coverage can be used to identify

regions with significant weather echoes; in turn, this infor-

mation can be used to drive the adaptive algorithm to rede-

fine the scan strategy and thus result in focused observations

with faster updates (Torres et al. 2016). In general, designing an

adaptive scanningConOps and a radar system that can support it

requires an iterative process in which consumers of radar data

and radar engineers work collaboratively to identify practical

solutions that can provide the needed performance. In this

context, realistic simulations are a practical means to conduct a

fair evaluation of the performance of different adaptive scanning

ConOps on a variety of weather situations using different radar

system designs.

The use of simulations to design and/or evaluate the per-

formance of adaptive scanning on weather radars is not new.

For example, Proud et al. (2009) used simulations to evaluate

adaptive scanning algorithms for CollaborativeAdaptive Sensing

of the Atmosphere (CASA) radars in terms of their ability to

produce radar data that would contribute to the identification

of circulations. In that work, the authors focused on analyzing

synthetic fields of Doppler velocity from idealized circulations

with varying characteristics as observed with different azi-

muthal resolutions and sampling intervals. More recently,

Weber et al. (2017) presented an adaptive scanning algorithm

that reduces the update time by leveraging the ability of PARs

to use multiple simultaneous receive beams. Their algorithm

adaptively determines the size of beam clusters depending on

the spatial characteristics of the reflectivity data. As in our

work, the authors used archived WSR-88D reflectivity fields.

However, they adopted a simplistic simulation approach that

does not include all radar variables and does not account for

realistic effects such as statistical fluctuations of the weather

signal, signal processing effects, beam broadening, antenna

pattern sidelobe and cross-polar degradations, or sensitivity

changes for different cluster sizes and different beams in each

cluster.

In this work, we describe a simulation framework to evaluate

the performance of adaptive scanning ConOps on different

phased-array radar designs. The simulator produces realistic

fields of radar data that could be used to 1) compare the per-

formance of different adaptive scanning ConOps on the same

weather event, 2) evaluate the performance of a given adaptive

scanning ConOps on several weather events, or 3) evaluate the

performance of a given adaptive scanning ConOps on a given

weather event using different radar designs. In other words, the

simulated radar data produced by the proposed simulation

framework can serve as a ‘‘common language’’ between engi-

neers and meteorologists, allowing the development and

evaluation of feasible ConOps to meet evolutionary NWS

observing needs. The rest of the paper is organized as follows.

Section 2 describes the simulation framework, which allows the

implementation and evaluation of a wide variety of adaptive

scanning ConOps targeting one or more of forecaster needs

(e.g., update-time reduction, larger spatial coverage, finer

spatial sampling, or improved radar data quality). Section 3

presents a particular instantiation of this framework to dem-

onstrate the use of adaptive scanning as a means to reduce the

update time. Section 4 illustrates how the simulation frame-

work can be used to design and evaluate different adaptive

scanning ConOps and to compare their performance on dif-

ferent radar designs. The conclusions and proposed future

work are summarized in section 5.
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2. Simulation framework

The simulation framework described in this section is pro-

posed as a unique means to design and evaluate the perfor-

mance of different adaptive scanning ConOps using realistic

fields of radar data. Moreover, simulations enable the com-

parison of different ConOps and different radar designs in

meaningful ways since the same weather event can be used for

all ConOps and radar combinations. Thus, the effects of dif-

ferent radar designs and their associated (potentially different)

ConOps on the quality of the radar data can be assessed using

true apples-to-apples comparisons, which could not be done

with real radar systems or with simplistic emulations. In other

words, the proposed simulation framework provides the best of

both worlds: realistic radar data corresponding to the use of

different radars and different ConOps, and the ability to re-

process the same weather event in different ways.

Figure 1 shows a block diagram of the proposed simulation

framework comprising three subsystems: signal simulation,

signal processing, and radar control. At a high level, a typical

adaptive scanning ConOps simulation involves the execution

of several simulation cycles, where a simulation cycle is defined

by the execution of a volume scan (herein referred to simply

as a scan). At the beginning of a simulation cycle, the simula-

tion time is updated by adding the previous scan time. That is,

the simulation time corresponds to the beginning of a simula-

tion cycle and advances at discrete and generally irregular time

intervals. For the next step in the simulation cycle, a scheduler

selects the current scan out of a set of available scans by

following the particular rules of the adaptive scanning

ConOps. With that information, the signal simulation sub-

system produces realistic time series [in-phase and quadra-

ture (IQ)] signals that include the combined effects of the

radar system characteristics and the acquisition parameters

of the current scan. The signal processor subsystem ingests

these IQ signals and, depending on the scan purpose, may

produce conventional radar variables (the outputs of the

simulator) and/or adaptive scanning products (internal to

the simulator). If the current scan produces adaptive scan-

ning products, these are used by the adaptive scanning al-

gorithms to modify one or more scans, which may include

the current scan. This cycle repeats until the desired simu-

lation time period is completed. Next, we describe the main

components of the simulation framework and each subsys-

tem in more detail.

a. Radar definition

As mentioned before, the simulation framework allows the

emulation of different radar systems. A radar system is speci-

fied through a set of relevant parameters that describe its main

design characteristics and how they relate to the radar system

used to collect the input data (herein referred to as the refer-

ence radar). One of the main design characteristics in the radar

definition is the antenna type. In our current implementation,

the antenna type can be a mechanically scanned reflector, a

mechanically and electronically scanned single-face planar phased

array, an electronically scanned four-face planar phased array, or

an electronically scanned cylindrical phased array. For these

radars, the antenna aperture size is indirectly specified by the

3-dB one-way effective antenna radiation pattern. For a PAR

system, this is the pattern used for narrow (pencil) beam op-

eration corresponding to a full nontapered aperture transmis-

sion. Any radar beamforming capabilities are implied in the

transmit and receive antenna radiation patterns that can be

selected (adaptively or not) in the simulation. Another im-

portant design characteristic is the radar sensitivity. The radar

definition includes a sensitivity factor that is defined by the

sensitivity of the longest waveform relative to that of the ref-

erence radar. This parameter includes differences in trans-

mitter peak power, narrow-beam antenna gain, system losses,

and receiver noise power. It is important to note that the

FIG. 1. Block diagram of the proposed simulation framework consisting of three subsystems: signal simulation,

signal processing, and radar control. Input base data are used to produce simulated base data as would be observed

with a user-defined radar system and adaptive scanning ConOps.
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simulation can only handle sensitivity factors equal to or less

than 1. That is, the resulting sensitivity of the emulated radar

cannot exceed that of the reference radar. The transmission

bandwidth is implied in the waveforms that can be selected

(adaptively or not) in the simulation. Because we are not trying

to compare radars in different frequency bands or to study the

frequency-dependent scattering differences between radar

systems, an implicit assumption is that the frequency of the

simulated radar matches that of the reference radar.

b. Scan definition

The scan is the fundamental simulation unit. Its definition

contains all necessary information to control different aspects of

radar transmission, reception, and signal processing. Figure 2

shows a schematic representation of the scan structure.At a high

level, a scan is a set of transmit beams organized as a collection

of constant-elevation cuts (hereafter simply referred to as

cuts). Themain properties of a scan are the azimuthal sampling

scheme (degree space for rotating antennas and either sine or

degree space for stationary phased-array antennas), the azi-

muth of broadside with respect to north for stationary anten-

nas, and the total azimuthal coverage (08–3608). Each cut

contains an ordered list of transmit beams and cut-specific

properties, which include the transmit and receive azimuthal

sampling spacings. Note that for radar systems with no ad-

vanced beamforming capabilities (e.g., those based on reflector

antennas or passive phased-array antennas), the transmit and

receive azimuthal sampling spacings are the same. That is,

there is only one receive beam for each transmit beam.

However, for radar systems with advanced beamformers, there

could be more than one receive beam for each transmit beam.

This is typically referred to as imaging or beam spoiling and

involves the use of broader or multilobe transmit beam pat-

terns. Note that, in this work, broad or multilobe transmit

beams are also referred to as transmit beams.

Each transmit beam in the scan corresponds to a dwell from

which one or more radials (or rays) of radar-variable estimates

will be generated by the signal processor. A radial contains

radar data for all range locations in a given azimuth–elevation

direction. A transmit beam can be either scheduled (enabled)

in the scan or not scheduled (disabled) and is specified by

transmit, receive, and dwell properties. The transmit properties

contain the transmit beam boresight azimuth and elevation, the

transmit antenna radiation patterns for each polarization, and

the transmit pulse. The transmit pulse can be specified as a se-

quence of one or more independent base-band transmission

waveforms, also referred to as subpulses; the assumption here is

that these subpulses are transmitted on different frequency

subbands and the waveforms can employ arbitrary modu-

lation schemes [e.g., continuous wave, linear frequency

modulation, or nonlinear frequency modulation (NLFM)].

For each transmit beam, there can be one or more receive

beams. The properties for each receive beam contain the

boresight azimuth and elevation and a set of copolar and,

for a dual-polarization radar, cross-polar receive patterns.

The dwell properties include an optional pulse-to-pulse

phase-coding sequence (e.g., Sachidananda and Zrnić 1999;

Ivić and Doviak 2016) and definitions for one or more coherent

processing intervals (CPI), where eachCPI is specified by a pulse

repetition time (PRT) and a pulse count.

c. Signal simulation

The signal simulation subsystem takes existing radar data

(collected by the reference radar) and produces simulated IQ

signals using the acquisition and sampling parameters of an

arbitrary radar-system and scan definitions. Here, radar data

refers to fields of base data (i.e., reflectivity, Doppler velocity,

spectrum width for a single-polarization radar and these plus

differential reflectivity, differential phase, and correlation co-

efficient for a dual-polarization radar). For our work, we use

archived WSR-88D base data from the National Centers for

Environmental Information (NCEI; https://www.ncei.noaa.gov/)

because they are easily accessible, they include a large variety

of weather scenarios, their spatial domain and temporal sam-

pling (;5min) are adequate for our simulation needs, and they

lead to simulated data with sufficient realism for the intended

FIG. 2. Representation of the scan definition used by the proposed simulation framework.
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purposes. However, the simulator could use fields of base data

collected by other radar systems or even outputs of numerical

weather prediction models (assuming adequate domain size

and diversity of weather scenarios).

The first step in the signal simulation process is the temporal

interpolation of the input base data. This is needed to remove

the dependency of the simulation time on the temporal sam-

pling of the input data. That is, the simulation scan times do not

need to match the update time of the input data. The temporal

interpolation function takes the two nearest sets of input data

in time (one prior and one after the simulation time) to gen-

erate realistic fields of radar variables at arbitrary times. We

use the algorithm by Meyer et al. (2015) on every cut in native

polar coordinates. This algorithm was developed for video

frame interpolation and is computationally simpler than con-

ventional optical-flow methods. In general, the realism of in-

terpolated fields is a function of the time between observations

of the reference radar and the degree of storm evolution in this

time. For the cases we analyzed, the ;5-min update times

of the WSR-88D data are sufficient even for fast-evolving

weather phenomena such as tornadic storms. However, it

should be noted that the fields of radar data produced in this

manner are not meant to be a substitute for data collected with

faster updates nor are they meant to reproduce the actual

radar-data fields at the interpolation time. Still, they are real-

istic enough for evaluating the most significant data-quality

impacts of different combinations of adaptive scanning ConOps

and radar design.

The second step uses the time-interpolated fields of radar data

as inputs to the Signal Processing And Radar Characteristics

(SPARC) simulator (Schvartzman and Curtis 2019) to produce

dual-polarimetric IQ data as determined by the scan definition

and radar properties defined above. At a high level, the

SPARC simulator takes one volume of base data from the

reference radar and first performs a data-conditioning step to

fill in any missing data and dealias the velocity fields. Then, it

resamples the conditioned fields to match the sampling grids of

the antenna radiation patterns and range weighting functions

of the emulated radar. For this work, we assume that the scans

used in the simulation have the same elevation cuts as the scan

used by the reference radar. We also assume that any adaptive

scanning algorithms operate in a single cut at a time and do not

change the antenna pattern in the elevation dimension. These

assumptions are not required by the simulation framework, but

greatly reduce the computational complexity of IQ simulations

without limiting our ability to demonstrate the proposed con-

cept. If changes in the elevation dimension were expected from

the chosen ConOps, the SPARC simulator extension devel-

oped by Nai et al. (2020) could be used to perform a volumetric

resampling of conditioned fields.

Next, resampled fields of base data are used to simulate IQ

data (Curtis 2018) at each point in a fine grid. As the final

step, the IQ data are weighted to incorporate the two-way

antenna-pattern (which may be different for each beam) and

range-weighting-function effects, and the results are spatially

decimated in azimuth and range to match the sampling grid of

the emulated radar. It is important to note that, for each

transmit beam in the scan, the SPARC simulator generates

independent dual-polarimetric IQ datasets for each CPI, each

frequency subband, and each receive beam. Thus, each IQ

dataset can have its own PRT, number of samples, range

weighting function, and two-way co- and cross-polarization

antenna patterns, allowing the simulation of radar data as if

they were collected with a variety of radar systems and scan-

ning strategies. In addition, each IQ dataset can have its own

SNR to emulate sensitivity differences arising from a particular

combination of radar design and scan definition. Finally, it

should be noted that the SPARC simulator does not attempt to

recreate the IQ data from the reference radar. Instead, it

simulates IQ data that, after signal processing, results in similar

depiction of weather features. In other words, the SPARC

simulator produces radar data with enough realism such that

experts presented with original and simulated fields are unable

to determine which one is which (Boettcher and Nai 2020).

d. Signal processing

The signal processor ingests simulated dual-polarimetric IQ

data for a single receive beam and, depending on the scan

purpose, may produce a radial of base data. Recall that each

receive beam contains IQ data for all the CPIs and frequency

subbands defined in the scan. The signal processing subsystem

includes modules for pulsed interference suppression, noise-

power estimation (Ivić et al. 2013), ground clutter detection

and filtering (Torres and Warde 2014), radar-variable estima-

tion (Doviak and Zrnić 1993), range unfolding and/or velocity

dealiasing [if using multi-pulse-repetition-frequency (PRF)

dwells], data merging (if using multiple frequency subbands),

and data thresholding (e.g., based on the SNR). The base data

produced by the signal processor are archived in simulation

time using the standard NEXRAD base-data format and can

be displayed using conventional data-visualization tools that

support this format (e.g., GRLevel2 or the NOAA Weather

and Climate toolkit). Depending on the scan purpose, the

signal processor may also produce adaptive scanning products,

which are the observables derived from the data to be used as

inputs to the adaptive scanning algorithms. Depending on the

adaptive scanning algorithm, these may include spatial or

temporal characteristics of the radar returns such as the mini-

mum and maximum range of significant echoes in a given di-

rection or the expected advection and growth of different

storm clusters.

e. Radar control

The radar control subsystem includes adaptive scanning and

scheduling algorithms that close the simulation loop. To allow

for the implementation of a wide range of adaptive scanning

and scheduling algorithms, the radar control subsystem is

connected to the rest of the simulation framework by generic

interfaces: its inputs are adaptive scanning products obtained

at the signal processor, and its output is the current scan

definition containing any changes imposed by the adaptive

scanning algorithms. For each available scan, the scheduler

defines a purpose that is used to determine how the IQ data will

be processed, whether base data are produced and archived,

which adaptive scan products are produced (if any), and which

scans may be updated by the adaptive scanning algorithms
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(if any). At the beginning of each simulation cycle, the

scheduler determines the next scan out of the set of available

scans. The scheduling criteria can be as simple as round-robin

scheduling or can be designed to meet specific objectives. An

example of the latter is the time-balance algorithm, which can

be used to minimize the delay in the execution of multiple

scans with individual update-time requirements (Reinoso-

Rondinel et al. 2010). The proposed simulation framework

provides the proper interface so that a variety of scheduling

techniques can be implemented and evaluated. At the end of

each simulation cycle, the adaptive scanning algorithms use

adaptive scanning products to modify one or more scans in

response to observations of the scene with the goal of

meeting specific needs. The adaptive scanning algorithm

defines which scan parameters are to be modified and how

this modification is performed. For example, the algorithm

described by Heinselman and Torres (2011) to reduce up-

date times while preserving spatial sampling and data

quality uses a radial significance product to modify a scan by

disabling transmit beams from locations that do not contain

significant weather returns [more on this algorithm is given

in section 3b(1)].

In general, the scheduler and adaptive scanning algorithms

could change dynamically given that the observational needs

may depend on the weather event and/or the needs of fore-

casters. Responding to these needs could result in changes to

the scans in terms of their update time, spatial sampling, and/or

associated data quality. For example, the observation of a

supercell capable of producing a tornado would require faster

updates with the best possible spatial sampling and data

quality. However, it may be challenging to meet these com-

peting requirements simultaneously. The ultimate goal of an

adaptive scanning algorithm is to produce scans with optimized

tradeoffs for each situation, and the proposed simulation

framework provides a unique tool to design and evaluate the

performance of these algorithms.

3. An adaptive scanning ConOps using the proposed
simulation framework

In this section, we describe a particular instantiation of the

simulation framework to demonstrate how it can be used as a

tool to evaluate an adaptive scanning ConOps that uses three

different adaptive scanning algorithms with the common goal

of reducing the data update time. To illustrate the flexibility of

the proposed simulation framework, we adopt a radar system

with four electronically scanned, planar, phased-array anten-

nas. The ConOps uses a fast surveillance scan to modify an

adaptive scan as in Torres et al. (2016). This is a simple but

effective adaptive scanning ConOps that serves to demon-

strate the flexibility and many of the features of the proposed

simulation framework. The details of the ConOps and the

three adaptive scanning algorithms are presented next.

a. Concept of operations

The ConOps under analysis uses two scans: a surveillance

(low fidelity) scan and an adaptive (high fidelity) scan. The

surveillance scan provides the inputs (i.e., the adaptive scan-

ning products) to the adaptive scanning algorithms, which

modify the adaptive scan. The surveillance scan is invariant

(i.e., nonadaptive) and uses short dwell times to minimize its

scan time while providing full spatial coverage. The base data

obtained with the surveillance scan do not meet the require-

ments for data quality and are only meant to be used internally

to produce adaptive scanning products. As such, when pro-

cessing data from the surveillance scan, the signal processor is

configured to produce radar variables using a minimal subset

of processing modules that is enough to generate adequate

adaptive scanning products.

The adaptive scan is intended to provide the users with base

data that meet observational needs. The adaptive scanning

algorithms use the adaptive scanning products derived from

the surveillance scan to update the adaptive scan in different

ways. The base data from the adaptive scan are outputs of the

simulator that could be interrogated by forecasters or used as

inputs to algorithms; in this implementation, no adaptive

scanning products are derived from it. Table 1 summarizes the

main characteristics of the two scans in this ConOps; internally,

these scans are represented as depicted in Fig. 2 and make up

the ‘‘set of available scans’’ in the block diagram of Fig. 1.

The scheduler uses a variant of round-robin scheduling in

which the execution of each scan is controlled by a scan-specific

repeat counter and/or timer. If using a repeat counter, the

scheduler executes the given scan the specified number of

times before changing the scan. If using a timer, the scheduler

repeats the execution of the given scan until the sum of the scan

times exceeds the timer. If using both, the scheduler changes

the scan when both conditions are met. This functionality

corresponds to the ‘‘scheduler’’ block in Fig. 1.

b. Adaptive scanning algorithms

In our example, the adaptive scanning algorithms are

designed to reduce the update time of the output base data,

which, in this ConOps, is a function of the surveillance and

adaptive scan times and the scheduler parameters. Because the

surveillance scan does not change, any reduction in the update

time can only be realized through a reduction in the adaptive

scan time. In general, the scan time is determined by the total

number of transmit beams in the scan and their corresponding

dwell times. Thus, the scan time can be reduced by reducing the

number of transmit beams, by reducing the dwell times, or by a

combination of both. In every case, reducing the adaptive scan

TABLE 1. Main characteristics of the two scans used in the adaptive scanning ConOps.

Coverage Dwell times Data quality Adaptive scanning products Base data products Adaptive

Surveillance scan Full Short Poor Yes No No

Adaptive scan Focused Nominal High No Yes Yes
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time involves one or more degradations in terms of spatial

sampling (resolution and/or coverage), data quality (sensi-

tivity and/or bias and variance of radar-variable estimates),

or both. Thus, the update-time reduction is a function of the

weather scenario and the adaptive scanning algorithm as

will be described later in this section and will be demon-

strated in section 4.

Several techniques have been proposed to reduce the update

time on PARs (e.g., Lai et al. 2004; Yu et al. 2007; Weber et al.

2007; Heinselman and Torres 2011; Isom et al. 2013; Melnikov

et al. 2015; Zrnić et al. 2015; Torres et al. 2016; Weber et al.

2017; Schvartzman et al. 2017). In the context of the four-face

PAR adopted here, we select three complementary adaptive

scanning algorithms that can be used (individually or in com-

bination) to provide significant update-time reductions: fo-

cused observations, beam clustering, and dwell tailoring; these

correspond to the ‘‘adaptive scanning’’ block in Fig. 1. While

this selection is not arbitrary, it should not be interpreted as

suggesting that these algorithms are the only ones or the best

ones available to reduce the scan time through adaptive scan-

ning. In other words, the adaptive scanning algorithms pre-

sented next are chosen only to illustrate the flexibility of the

simulation framework and the realism of the data produced by

it. For each algorithm, we provide an assessment of the ex-

pected impacts to the quality of radar data and confirm our

expectations through experimental results in section 4.

1) FOCUSED OBSERVATIONS (ADAPTS)

The Adaptive Digital Signal-Processing Algorithm for PAR

Timely Scans (ADAPTS) algorithm (Heinselman and Torres

2011) exploits the PAR beam agility to only scan regions with

significant weather returns. The algorithm adaptively enables

or disables transmit beams in the adaptive scan based on echo

significance measured from the surveillance scan. Thus, the

time savings afforded by ADAPTS depends on the spatial

coverage of precipitation systems. The smaller the coverage,

the larger the time savings. In this algorithm, a beam position is

deemed intrinsically significant if there are sufficient range

gates with reflectivity exceeding a user-defined threshold. To

account for storm growth and advection, significance is also

assigned to beam positions in a predefined spatial neighbor-

hood of beams with intrinsic significance. Our implementation

uses a coverage threshold of four consecutive range gates or

enough gates to cover a 1-km2 area (whichever number is

larger), a reflectivity threshold of 11 dB, and a neighborhood of

two beam positions on either side of each intrinsically signifi-

cant beam (along the azimuthal direction).

Because ADAPTS only enables or disables transmit beams

in the scan, it does not impact the quality of the radar data that

it produces. That is, the data from enabled transmit beams in

the adaptive scan have the same quality as if they had been

obtained without adaptive scanning. However, ADAPTS leads

to a deliberate loss of coverage: the resulting fields of radar

data exhibit coverage gaps corresponding to the disabled

transmit beams.

2) BEAM CLUSTERING

The adaptive beam clustering algorithm exploits the PAR

beamforming capabilities to reduce the scan time by simulta-

neously producing multiple receive beams within a ‘‘spoiled’’

or wider transmit beam (Weber et al. 2017). The time savings

afforded by this algorithm is proportional to the spoil factor,

where the spoil factor is defined as the width of the spoiled

transmit beam with respect to the narrow or pencil beam.

However, spoiling the transmit beam comes at a cost: reduced

sensitivity and degraded spatial resolution. The former is the

result of the transmit power being spread over a larger region

of space (i.e., the larger the spoil factor is, the smaller will be

TABLE 2. Main characteristics of the lowest-elevation cuts in the surveillance and adaptive scans.

Surveillance scan Adaptive scan

Azimuthal sampling spacing 1 beamwidth 0.5 beamwidth

Range sampling spacing 250m 250m

Transmission mode Simultaneous horizontal and

vertical polarizations

Simultaneous horizontal and vertical polarizations

Subpulses 80-ms modulated (NLFM) and

1.6-ms unmodulated

80-ms modulated (NLFM) and 1.6-ms unmodulated

Beamforming Pencil beam Pencil beam (if the adaptive beam clustering algorithm is not

used); pencil beam, spoiled beam by a factor of 3, or spoiled

beam by a factor of 5 (if the adaptive beam clustering

algorithm is used)

Dwell type Uniform PRF Triple PRF (if the adaptive dwell type algorithm is not used);

uniform PRF, dual PRF, or triple PRF (if the adaptive dwell

type algorithm is used)

Max unambiguous range 450 km 450 km (if the adaptive dwell type algorithm is not used);

150–450 km (if the adaptive dwell type algorithm is used)

Max unambiguous velocity 8.8m s21 26.2m s21

Dwell time 12ms 78.5ms (if the adaptive dwell type algorithm is not used);

20–78.5ms (if the adaptive dwell type algorithm is used)

Benchmark std dev of reflectivity

(SNR 5 10 dB; sV 5 4m s21)

2.02 dB 1.29 dB (if the adaptive dwell type algorithm is not used);

1.22–1.29 dB (if the adaptive dwell type algorithm is used)
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the transmit antenna gain). The latter is the result of combining

a wider transmit pattern with a narrow receive pattern (as

opposed to using narrow patterns on both transmit and re-

ceive) leading to higher two-way antenna pattern sidelobes

and a larger main-lobe width.

To account for these tradeoffs, we devised a requirement-

driven adaptive beam clustering algorithm whereby the azi-

muthal transmit-beam spoil factor is selected based on the

spatial structure of the reflectivity data. Unlike the algorithm

proposed by Weber et al. (2017) that forces a number of beam

clusters to achieve a required scan time, our algorithm creates

as many beam clusters as possible while preventing sidelobe

contamination from significantly degrading the quality of the

data. That is, the use of larger azimuthal beam spoil factors is

limited by the presence of large reflectivity gradients in the

azimuthal direction (we do not consider spoiling in elevation

here). Thus, the smaller the azimuthal gradients of reflectivity,

the larger the time savings. The algorithm uses the surveillance-

scan reflectivity data to estimate the relative biases thatwould be

incurred through the use of different transmit beam spoil fac-

tors. This is done by applying two-way antenna patterns ob-

tained from progressively larger transmit beam spoil factors to

the reflectivity field from the surveillance scan. The resulting

reflectivity data are compared to the input surveillance data,

and relative reflectivity biases are obtained for each range gate.

Since the same two-way antenna pattern is used for all range

gates in a radial, we use the median of the top-1% biases as a

representative metric that captures the worst-case-scenario

biases in a robust manner. Using this metric, the algorithm

chooses the largest transmit beam spoil factor such that the

reflectivity biases resulting from the degraded spatial resolu-

tion do not exceed a required threshold (2 dB in our case).

Once an appropriate spoil factor is determined for a transmit

beam, the adaptive scan is modified to use the corresponding

transmit pattern and adjacent transmit beams covered by the

newly formed cluster of receive beams are disabled. For our

implementation, we allow transmit beam spoil factors of 3 and

5, in addition to the conventional narrow pencil beams (i.e., no

transmit beam spoiling). For simplicity and as a means to il-

lustrate the flexibility of the simulation framework, this im-

plementation only explicitly considers the quality of reflectivity

data, but the algorithm could be generalized to take into ac-

count the quality of the other radar variables as well.

Depending on the spoil factor, the adaptive beam clustering

algorithm introduces a few impacts to the quality of the radar

data. As mentioned before, the larger the spoil factor, the

lower the sensitivity and the coarser the spatial resolution

FIG. 3. Scan time for each of the four faces of the full-size radar as

a function of simulation time for experiment 2 (using the ADAPTS

algorithm). The vertical black dotted lines correspond to time A

and time B. The horizontal black dotted line corresponds to the

scan time for experiment 1 (using the conventional ConOps).

FIG. 4. Fields of reflectivity for the lowest elevation cut (0.58) for
experiment 1 (using the conventional ConOps) for (top) Time A

(1905 UTC) and (bottom) time B (2149 UTC).
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(given by a wider antenna pattern main-lobe width and ele-

vated sidelobe levels). Sensitivity changes from the use of

different spoil factors are seen in the fields of radar data as

abrupt increases or decreases in the footprint of storms or

clear-air returns close to the radar. Degradations in the spatial

resolution should be seen as positive biases on reflectivity

fields, especially in the presence of azimuthal reflectivity

gradients. However, the adaptive beam clustering algorithm

is designed to limit these biases to 2 dB for over 99% of the

gates, so these biases should not be apparent through visual

inspection.

3) DWELL TAILORING

The adaptive dwell tailoring algorithm reduces the scan time

by using the shortest dwell without compromising coverage or

data quality. In our case, multi-CPI (or multi-PRF) dwells,

where each CPI employs a different PRF, are used to simul-

taneously achieve the required spatial coverage and maximum

unambiguous velocity. Unfortunately, this comes at the price

of longer dwell times. However, when storms are located

within the maximum unambiguous range of the shorter PRTs,

the number of CPIs can be reduced without impacting the

spatial coverage or the data quality. The time savings afforded

by the adaptive dwell tailoring algorithm depends on the lo-

cation of precipitation systems with respect to the radar. The

closer the storms are to the radar, the larger the time savings.

In this algorithm, the dwell is tailored to themaximum range

of storms, which is determined from the surveillance scan using

similar significance criteria as in the ADAPTS algorithm. In

this context, tailoring consists of choosing the appropriate CPI

subset (from a set of three predeterminedCPIs, herein referred

to as the high-, medium-, and low-PRF CPIs) and adjusting the

total number of samples (also from a set of three pre-

determined values, one for each CPI). To preserve the maxi-

mum unambiguous velocity and reduce the occurrence of

velocity aliasing, the CPI with the high PRF is always included.

FIG. 5. Fields of reflectivity for the lowest elevation cut (0.58) at time A for (top left) experiment 2 (using the

ADAPTS algorithm), (top right) experiment 3 (using the adaptive beam cluster algorithm), (bottom left) exper-

iment 4 (using the adaptive dwell tailoring algorithm), and (bottom right) experiment 5 (using the three adaptive

scanning algorithms concurrently).
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That is, when the maximum range of storms is within the

maximum unambiguous range of the high PRF, only the CPI

with the high PRF is used. However, when the maximum range

of storms is between the maximum unambiguous ranges of the

high and medium PRFs, the CPIs with the high and medium

PRFs are kept. Otherwise, if the maximum range of storms

exceeds the maximum unambiguous range of the medium

PRF, all CPIs are retained. To preserve data quality, the

number of samples of the retained CPI with the lowest PRF is

increased (if needed) to match the duration of the longest

discarded CPI.

The adaptive dwell tailoring algorithm does not have any

apparent impacts to the quality of the radar data. As the

number of PRFs is reduced, so is the maximum unambiguous

range, but the algorithm is designed to make these changes

only in areas where such reduction would not result in reduced

coverage. In addition, the dwell tailoring rules are designed to

preserve the maximum unambiguous velocity and to adjust the

dwell times so that the data quality is not changed with respect

to that from the original scan.

4. Experimental results

In this section, we show how the simulation framework can

be used to design and evaluate adaptive scanning algorithms

and to compare their performance on different PAR designs.

We consider two related notional radar designs as in Cho

(2015) based on the four-face, electronically scanned, PAR

architecture. The first radar is referred to as the ‘‘full size’’

PAR. This is a system with a power-aperture similar to that

of the WSR-88D. That is, each antenna (or face) has an

8-m-diameter circular aperture with about 10 000 30-W ra-

diating elements per face, resulting in an intrinsic beamwidth

at broadside of 18 and a long-pulse sensitivity of 210 dBZ at

FIG. 6. As in Fig. 5, but for the adaptive scanning products. Transmit beams disabled by ADAPTS are not

painted. Pencil beams (31) are painted in three shades of blue, spoiled beams with a factor of 3 (33) are painted in

three shades of red, and spoiled beams with a factor of 5 (35) are painted in three shades of green. Transmit beams

with single- or uniform-PRF (UPRT) dwells are painted in a light shade of the color corresponding to the spoiling

factor, those with dual-PRF (DPRF) dwells are painted in a medium shade, and those with triple-PRF (TPRF)

dwells are painted in a dark shade.
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50 km. The second radar is referred to as the ‘‘terminal-size’’

PAR. This system is a scaled-down version of the first radar, it

has a power-aperture similar to that of theAirport Surveillance

Radar (ASR) and could be used as a gap-filling radar. In this

system, each antenna has a 4-m-diameter circular aperture with

about 2800 5-W radiating elements per face, resulting in an

intrinsic beamwidth at broadside of 28 and a long-pulse sensi-

tivity of 22.5 dBZ at 50 km. Whereas they differ in size and

transmit power, the assumption is that both radar systems are

based on similar building blocks and have the following com-

mon characteristics. The broadsides for the four faces are 0.58
elevation and 08, 908, 1808, and 2708 azimuth with respect to

north; each face covers a 908 azimuthal sector, and they are

referred to as the north, east, south, and west faces. Both radars

use pulse compression to achieve the desired sensitivity while

maintaining a range resolution of 250m. Available waveforms

use a 6-MHz transmission bandwidth and span pulse widths

from 38 to 80ms. A short 1.6-ms unmodulated fill pulse (in a

different frequency subband) is transmitted after the long

modulated pulse to obtain coverage close to the radar due to

the extended blind zone (Cheong et al. 2013). The surveillance

and adaptive scans of the ConOps described in the previous

section both cover elevations from 0.58 to 19.58 using 14 cuts, as
in the volume coverage pattern (VCP) 12 used on the WSR-

88D (Brown et al. 2005). For the full-size (terminal size) radar,

the surveillance and initial adaptive scan times are 7.8 s (3.9 s)

and 138.5 s (68.8 s), respectively. The acquisition parameters

and benchmark data quality of reflectivity estimates for the

lowest elevation cut (0.58) in the surveillance and the adaptive

scans are summarized in Table 2.

For all experiments, the reference radar is the KTLX

WSR-88D instrument in TwinLakes,Oklahoma. The input base

datawere obtained from theNCEI repository and correspond to

4 h of base data starting at 1900 UTC 20May 2013 (ROC 1991).

This dataset captures the life cycle of the EF5 (on the enhanced

Fujita scale) tornado that affected the Oklahoma cities of

Newcastle, Oklahoma City, and Moore. We selected this case

because it has received significant attention (e.g., Kurdzo et al.

2015), but, more important, because it includes large variability

of storm coverage and significant spatial gradients of re-

flectivity, resulting in nontrivial challenges for the chosen

adaptive scanning algorithms. We used the same input data

FIG. 7. As in Fig. 5, but at time B.
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with both radar designs and the ConOps described in the

previous section with selective application of the adaptive

scanning algorithms. For the scheduler, we used a repeat count

of 1 for the surveillance scan and 2 for the adaptive scan (timers

were not used).

To demonstrate the flexibility of the proposed simulation

framework, we consider four ConOps configurations. The first

configuration consists of disabling all adaptive scanning algo-

rithms; this is referred to as the conventional ConOps and it is

used as a baseline or reference simulation. Configurations 2, 3,

and 4 consist of enabling only one adaptive scanning algorithm

at a time (ADAPTS, adaptive beam clustering, and adap-

tive dwell tailoring, respectively). Configuration 5 consists of

enabling all three of the adaptive scanning algorithms con-

currently. These ConOps configurations are tested on two

conceptual radar designs as described above: the full-size and

the terminal-size PAR. Finally, the realism of the simulated

radar data is assessed through a series of experiments, where

each combination of radar design and ConOps configuration

is a different experiment. Experiments 1–5 use the fiveConOps

configurations on the full-size radar, and experiment 6 uses the

fifth ConOps configuration on the terminal-size radar. For each

experiment, we use the resulting simulated data to show that it

can provide useful quantitative metrics. In our case, given that

we chose adaptive scanning algorithms aimed at reducing the

update time, we focus on measuring the resulting scan times.

We also use the resulting radar data fields to confirm the re-

alism of the simulations. For this purpose, we show that all first-

order data-quality impacts predicted in section 3 are present in

the simulated data. While we focus our analysis on a particular

set of algorithms, ConOps, and radar designs, it should be

noted that the proposed framework is flexible and not limited

to these arbitrary choices. In fact, it could be used to implement

and evaluate the performance of other types of adaptive

scanning algorithms, ConOps, and radar designs.

Figure 3 shows the scan time for each of the four faces of the

full-size radar as a function of simulation time for experiment

2 (i.e., the full-size radar using the ADAPTS algorithm). As

expected, ADAPTS is very effective at reducing the scan time

when the coverage of significant returns is reduced (e.g., in

the presence of a few isolated storm cells). Figure 4 shows

the reflectivity fields for the lowest-elevation cut (0.58) for

FIG. 8. As in Fig. 6, but at time B.
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experiment 1 (full-size radar with conventional scanning) and

two representative simulation times: time A (1905 UTC) cor-

responds to a low-coverage situation and time B (2149 UTC)

to a high-coverage situation. As expected with a four-face

stationary PAR, the beam broadens as the radar scans toward

the edge of each 908 sector, and so does the azimuthal sam-

pling spacing, because of our choice of sine-space sampling.

Nevertheless, these effects would be present whether using

adaptive scanning or not. In theory, because the four faces

operate independently, a temporal discontinuity could be

present in the data across adjacent 908 sectors. However, to

reduce computational complexity, the simulation was config-

ured to assume no storm evolution within the scan time, so this

effect is not simulated. Figures 5–8 show reflectivity fields. The

top-left panels of Figs. 5 and 7 show the reflectivity fields ob-

tained with experiment 2 for the same two times. For time A,

the use of ADAPTS resulted in time savings of 23%, where the

time savings is computed using the longest scan time among all

four faces and with respect to the scan time obtained with the

conventional ConOps. For time B, ADAPTS did not provide

any time savings because all but the west face had to cover full

908 sectors. The corresponding adaptive scanning products are
also included for times A and B in the top-left panels of Figs. 6

and 8, where the beam positions enabled by ADAPTS are

painted blue and the disabled ones are not painted. Comparison

of Fig. 4 with the top-left panels of Figs. 5 and 7 demonstrates

that, as designed, the beam positions that ADAPTS disabled do

not contain significant returns. For example, all storm cells

present at time A to the southwest and to the northeast of the

radar can be seen in the reflectivity field obtainedwithADAPTS.

Significant returns to the west of the radar are also preserved,

and only the weakest returns are not sampled. It can certainly

be argued whether the regions not sampled byADAPTS in this

example contain useful or significant returns based on other

criteria. However, the goal here is to illustrate how the pro-

posed simulation framework can be used to evaluate, under-

stand, and fine-tune the performance of ADAPTS.

Figure 9 is the same as Fig. 3 but for experiment 3 (i.e., the

full-size radar using the adaptive beam clustering algorithm).

This algorithm is more effective at reducing the scan time when

the azimuthal reflectivity gradients are small. The top-right

panels of Figs. 5 and 7 show the reflectivity fields for the lowest

elevation cut for experiment 3 and the same times A and B

identified in the previous experiment, respectively. For timeA,

the use of the adaptive beam clustering algorithm resulted in

FIG. 9. As in Fig. 3, but for experiment 3 (using the adaptive beam

clustering algorithm).

FIG. 10. As in Fig. 3, but for experiment 4 (using the adaptive dwell

tailoring algorithm).

FIG. 11. As in Fig. 3, but for experiment 5 (using all three adaptive

scanning algorithms concurrently).
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FIG. 12. Probability of reflectivity pairs for times (left)A and (right) B, where the first component (x axis) comes

from experiment 1 and the second component (y axis) comes from experiments (top) 2, (top middle) 3, (bottom

middle) 4, and (bottom) 5. Both components of a pair come from the same location in the reflectivity fields. The

probability is computed as the ratio of the number of pairs in each 0.1 by 0.1 dBZ bin to the total number of pairs.

The solid red lines are the one-to-one lines. The Pearson correlation coefficient r, bias, and root-mean-square

error (rmse) are included for each case.
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time savings of 47%. For time B, the time savings was only

15%. In this case, the adaptive scanning products in the top-

right panels of Figs. 6 and 8 indicate the size of the cluster:

pencil beams are painted blue, spoiled beams with a factor of

3 are painted red, and spoiled beams with a factor of 5 are

painted green. Note that for the adaptive scan defined above

that uses 50% overlapped beams in azimuth, spoil factors of

3 and 5 correspond to receive beam clusters of five and nine

beams, respectively. Comparison of Fig. 4 and the top-right

panels of Figs. 5 and 7 demonstrates that the largest beam

clusters are placed in regions with no significant echoes or with

more uniform reflectivity fields whereas pencil beams are

placed in regions with large azimuthal reflectivity gradients.

For example, at timeA, beam clusters with five and nine beams

are used everywhere except in the southwest sector containing

a few isolated storm cells. In this sector, pencil beams are used

to preserve the spatial structure of the fields. Everywhere else,

the use of spoiled transmit beams does not result in obvious

data-quality impacts, confirming the expected performance of

the bias-limiting criterion of the adaptive beam clustering al-

gorithm. The expected change in sensitivity from the use of

spoiled transmit beams is also apparent in the coverage of

simulated fields, this is especially evident in the northeast

sector, where alternating transmit beams with spoil factors of

3 and 5 create spoke-like artifacts in the data. At time B, when

severe storms exhibit greater coverage, the algorithm uses

mostly pencil beams, with a few occurrences of five-beam

clusters and even fewer of nine-beam clusters.

Figure 10 is the same as Fig. 3 but for experiment 4 (i.e., the

full-size radar using the adaptive dwell tailoring algorithm).

This algorithm is more effective at reducing the scan timewhen

all storms are closer to the radar. The bottom-left panels of

Figs. 5 and 7 show the reflectivity fields for the lowest elevation

cut for experiment 4 and times A and B. For time A, the use of

the adaptive dwell tailoring algorithm resulted in time savings

of 46%. For timeB, the time savings was slightly less at 41%. In

this case, the adaptive scanning products in the bottom-left

panels of Figs. 6 and 8 indicate the dwell type: beams with

single, dual, and triple-PRF dwells are painted light, medium,

and dark blue, respectively. Comparison of Fig. 4 and the

bottom-left panels of Figs. 5 and 7 corroborates that the use of

single- and dual-PRF dwells (instead of the initial triple-PRF

ones) does not result in any loss of coverage or data quality. For

example, at time A, the adaptive dwell tailoring algorithm uses

single-PRF dwells almost everywhere, except in small sectors

to the southwest and to the north-northeast of the radar, where

the maximum range of storms is the largest. At time B, there

are more beams using multi-PRF dwells, which are needed to

deal with the presence of larger storms at longer ranges. Also,

comparing the reflectivity fields with those in Fig. 4, we see no

appreciable change in data quality. This is because reflectivity

is estimated using data from the available CPI with the lowest

PRF, and the adaptive algorithm adjusts the dwell times to

produce data with similar quality regardless of the number of

CPIs in the dwell.

Figure 11 is the same as Fig. 3 but for experiment 5 (i.e., the

full-size radar using all adaptive scanning algorithms concur-

rently). The adaptive scanning products from each algorithm

are combined using the following logic. For each cluster de-

termined by the adaptive beam clustering algorithm, we use

the ADAPTS and dwell-type outputs for the receive beams

within the cluster. Only if all receive beams in a cluster were

disabled by ADAPTS, the cluster is disabled. In this case, the

outputs from the adaptive dwell tailoring algorithm are ig-

nored. Otherwise, if at least one receive beam in the cluster was

left enabled by ADAPTS, the entire cluster is enabled and the

dwell type with the largest number of CPIs is selected. In

comparing Figs. 3 and 9–11, we confirm that the fastest updates

are achieved when all the available adaptive scanning algo-

rithms are in use. The bottom-right panels of Figs. 5 and 7 show

the reflectivity fields for the lowest elevation cut for times A

andB. For timeA, the use of all adaptive algorithms resulted in

time savings of 77% (as compared with 23%, 47%, and 46%

obtained while using each of the adaptive scanning algorithms

individually). For time B, the time savings was 43% (as com-

pared with 0%, 15%, and 41%obtained while using each of the

adaptive scanning algorithms individually). In this case, the

adaptive scanning products in the bottom-right panels of Figs. 6

and 8 indicate the resulting combination of individual adaptive

scanning products.

To confirm that the simulated data exhibit the desired re-

alism in terms of data quality, we compare the simulated

reflectivity fields at times A and B from experiments 2–5 to

those from experiment 1. Figure 12 shows the probability of

reflectivity pairs, where the first component (x axis) comes

from experiment 1 and the second component (y axis) comes

from experiments 2–5 (the rows from top to bottom). Both

components of a pair come from the same location in the re-

flectivity fields, and the probability is computed as the ratio of

the number of pairs in each 0.1 by 0.1 dBZ bin to the total

number of pairs. As expected, for all cases, there is a higher

concentration of pairs near the one-to-one line with Pearson

correlations above 0.93. There is slightly better correlation at

FIG. 13. As in Fig. 11, but for the terminal-size radar.
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time B due to the larger coverage and strength of storms. The

dispersion around the one-to-one line [quantified by the root-

mean-square error (rmse)] is similar for all cases as it comes

from expected statistical fluctuations inherent to the IQ data

simulation process, which is repeated for each experiment. As

expected, the biases for experiments 2 and 3 are small since

neither ADAPTS or the adaptive dwell tailoring algorithm

should impact the bias or standard deviation of the reflectivity

data. However, the biases for experiments 4 and 5, which in-

clude the adaptive beam clustering algorithm, are meaning-

fully higher. This is also expected, since the use of spoiled

transmit beams introduces reflectivity biases in the presence of

gradients, which the adaptive scanning algorithm tries to con-

tain. These quantitative comparisons confirm the qualitative

analyses above.

Figure 13 is the same as Fig. 11 but for experiment 6 (i.e., the

terminal-size radar using all adaptive scanning algorithms

concurrently). Because this radar has a smaller aperture (i.e.,

wider beamwidths), it can cover each 908 sector with fewer

transmit beams in sine space (e.g., 81 beams using 50%

azimuthally overlapped pencil beams) compared to the full-size

radar (e.g., 163 beams using 50% azimuthally overlapped pencil

beams). Because of this, the scan times with the terminal-size

radar are generally shorter than those with the full-size radar.

This, of course, comes at the price of degraded sensitivity and

spatial resolution. For time A, the use of all adaptive algo-

rithms with the terminal-size radar resulted in time savings of

81% (as compared with 77% with the full-size radar); for time

B, the savings is 45% (as compared with 43%). Figure 14 shows

the reflectivity fields for the lowest elevation cut for experi-

ment 6 and the same times A and B identified in previous ex-

periments. The data-quality impacts of using a different radar

are evident in the simulated radar data. Relative to the bottom-

right panels of Figs. 5 and 7, the reflectivity fields in Fig. 14

exhibit degradation in azimuthal resolution (evident as a

coarser structure of echoes) and reduced sensitivity (evident as

smaller footprints of storms). However, while not exactly the

same, the scan modifications made by the adaptive scanning

algorithms are similar on both radars when sampling the

same scene.

FIG. 14. (left) Fields of reflectivity and (right) corresponding adaptive scanning products for the lowest-elevation

cut (0.58) for experiment 6 (using all adaptive scanning algorithms concurrently on the terminal-size radar) for times

(top) A and (bottom) B.
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Figure 15 shows a comparison of total scan times for ex-

periments 2–6, where the total scan time is obtained as the

maximum scan time among all four faces. The results in this

figure confirm that, for this event and using the full-size radar,

ADAPTS results in the smallest time savings, generally followed

by the adaptive beam clustering and the adaptive dwell type

algorithms. It is also evident that the combination of all adaptive

scanning algorithms leads to the shortest total scan times. As

argued before, the scan times with the terminal-size radar are

shorter due the fewer number of beams needed for full coverage,

but the time savings as a percentage of the scan time using a

conventional ConOps are similar between the two radars.

5. Conclusions

We presented a simulation framework to evaluate the per-

formance of adaptive scanning ConOps using different phased-

array radar designs. In essence, the proposed simulation

framework produces realistic radar data to support the devel-

opment and evaluation of feasible adaptive scanning ConOps

to meet evolutionary NWS observing needs. That is, it enables

the concept of the ‘‘meteorologist in the loop’’ as described by

Nai et al. (2020). The simulation framework consists of three

main subsystems: signal simulation, signal processing, and ra-

dar control providing sufficient flexibility and customization

to simulate a variety of relevant radar designs and adaptive

scanning ConOps via a modularized design. A fundamental

piece of the simulator is the scan definition, which contains

adaptable information that controls key aspects of radar

transmission, reception, and signal processing. The simulation

is driven by simple configuration files that define the main

characteristics of the reference and emulated radars, including

antenna geometry, transmit and receive parameters, and

temporal and spatial sampling parameters.

Our experimental results used input data from a significant

weather event collected by the KTLX radar and produced

output data as would be observed by two different radar

systems using four different ConOps configurations. These

results were presented only to illustrate the flexibility of the

proposed framework. Whereas comprehensive analyses of

different adaptive scanning algorithms and ConOps are left for

future research, the results presented here confirm that the

output data produced by the simulator exhibit sufficient realism

and could be useful to obtain quantitativemetrics and to perform

qualitative comparisons. Once the adaptive scanning algorithms

and scheduler are implemented for a particular ConOps setup,

exploring the performance on other weather events is straight-

forward: all it takes is downloading any archived set of radar data

from NCEI into a separate directory and configuring the simu-

lator to use the input data in that directory.

As the NWS evaluates potential replacement solutions

for the WSR-88D, we plan to use the proposed simulation

framework to inform the design and selection of potential so-

lutions. Achieving the best trade-off between improved capa-

bilities, cost, and complexity is challenging, and the solution to

meet demanding objective requirements may include the

combination of several complementary adaptive scanning al-

gorithms. It is expected that the NWS will also want to assess

cost-performance trades between various radar architectures

under consideration (e.g., planar, cylindrical, rotating, and fixed

multiface) and associated scanning concepts. This simulation

infrastructure can tackle any or all of these different configu-

rations. As a critical part of the radar design process, this tool

could help to bridge the gaps between radar engineers, mete-

orologists, NWS forecasters, and decision-makers, effectively

creating a ‘‘common language’’ among all stakeholders.

Acknowledgments. The authors thank Mark Weber, Chris

Curtis, and three anonymous reviewers for providing comments

to improve the paper. Funding was provided by NOAA/Office

of Oceanic and Atmospheric Research under NOAA–University

of Oklahoma Cooperative Agreement NA11OAR4320072, U.S.

Department of Commerce.

REFERENCES

Andra, D. L., E. M. Quoetone, and W. F. Bunting, 2002: Warning

decision making: The relative roles of conceptual models,

technology, strategy, and forecaster expertise on 3 May 1999.

Wea. Forecasting, 17, 559–566, https://doi.org/10.1175/1520-

0434(2002)017,0559:WDMTRR.2.0.CO;2.

Boettcher, J., and F. Nai, 2020: A meteorologist embedded with

engineers: Bringing NWS user perspectives to the design of

future operational weather radar systems. Proc. 30th Conf. on

Weather Analysis and Forecasting, Boston,MA, Amer. Meteor.

Soc., 10A.4, https://ams.confex.com/ams/2020Annual/mediafile/

Manuscript/Paper367474/AMS2020%20Extended%20Abstract%

2010A.4.pdf.

Bowden,K.A., P. L.Heinselman,D.M.Kingfield, andR. P. Thomas,

2015: Impacts of phased-array radar data on forecaster perfor-

mance during severe hail and wind events.Wea. Forecasting, 30,

389–404, https://doi.org/10.1175/WAF-D-14-00101.1.

Brotzge, J., K. Hondle, B. Philips, L. Lemon, E. Bass, D. Rude, and

D. Andra Jr., 2010: Evaluation of distributed collaborative

adaptive sensing for detection of low-level circulations and

implications for severe weather operations. Wea. Forecasting,

25, 173–189, https://doi.org/10.1175/2009WAF2222233.1.

FIG. 15. Total scan time as a function of simulation time for

experiments 2–6. The vertical black dotted lines correspond to time

A and time B.

DECEMBER 2020 TORRES AND SCHVARTZMAN 2337

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/02/21 04:24 PM UTC

https://doi.org/10.1175/1520-0434(2002)017<0559:WDMTRR>2.0.CO;2
https://doi.org/10.1175/1520-0434(2002)017<0559:WDMTRR>2.0.CO;2
https://ams.confex.com/ams/2020Annual/mediafile/Manuscript/Paper367474/AMS2020%20Extended%20Abstract%2010A.4.pdf
https://ams.confex.com/ams/2020Annual/mediafile/Manuscript/Paper367474/AMS2020%20Extended%20Abstract%2010A.4.pdf
https://ams.confex.com/ams/2020Annual/mediafile/Manuscript/Paper367474/AMS2020%20Extended%20Abstract%2010A.4.pdf
https://doi.org/10.1175/WAF-D-14-00101.1
https://doi.org/10.1175/2009WAF2222233.1


Brown, R. A., V. T. Wood, R. M. Steadham, R. R. Lee, B. A.

Flickinger, and D. Sirmans, 2005: New WSR-88D volume

coverage pattern 12: Results of field tests. Wea. Forecasting,

20, 385–393, https://doi.org/10.1175/WAF848.1.

Cheong, B. L., R. Kelley, R. D. Palmer, Y. Zhang, M. Yeary, and

T.-Y. Yu, 2013: PX-1000: A solid-state polarimetric X-band

weather radar and time-frequency multiplexed waveform for

blind range mitigation. IEEE Trans. Instrum. Meas., 62, 3064–

3072, https://doi.org/10.1109/TIM.2013.2270046.

Cho, J. Y. N., 2015: Revised multifunction phased array radar

(MPAR) network siting analysis. MIT Lincoln Laboratory

Project Rep. ATC-425, 86 pp., https://www.ll.mit.edu/sites/

default/files/publication/doc/2018-05/Cho_2015_ATC-425.pdf.

Chrisman, J. N., 2009: Automated volume scan evaluation and

termination (AVSET): A simple technique to achieve faster

volume scan updates for the WSR-88D. 34th Conf. on Radar

Meteorology, Williamsburg, VA, Amer. Meteor. Soc., P4.4,

http://ams.confex.com/ams/pdfpapers/155324.pdf.

Crum, T. D., andR. L. Alberty, 1993: TheWSR-88Dand theWSR-

88D Operational Support Facility. Bull. Amer. Meteor. Soc.,

74, 1669–1687, https://doi.org/10.1175/1520-0477(1993)

074,1669:TWATWO.2.0.CO;2.

Curtis, C. D., 2018:Weather radar time series simulation: Improving

accuracy and performance. J. Atmos. Oceanic Technol., 35,

2169–2187, https://doi.org/10.1175/JTECH-D-17-0215.1.

Daniel, A. E., J. N. Chrisman, C. A. Ray, S. D. Smith, and M. W.

Miller, 2014:NewWSR-88Doperational techniques:Responding

to recent weather events. Proc. 30th Conf. on Environmental

Information Processing Technologies, Atlanta, GA, Amer.

Meteor. Soc., 5.2, https://ams.confex.com/ams/94Annual/

webprogram/Paper241216.html.
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Forsyth, 2007: Beam multiplexing using the phased-array

weather radar. J. Atmos. Oceanic Technol., 24, 616–626, https://

doi.org/10.1175/JTECH2052.1.
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